Perturbation of second order nonlinear equation by delta-like potential

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Velocity-Density Coupling: Analysis by Second-Order Perturbation Theory

Cosmological linear perturbation theory predicts that the peculiar velocity V (x) and the matter overdensity δ(x) at a same point x are statistically independent quantities, as log as the initial density fluctuations are random Gaussian distributed. However nonlinear gravitational effects might change the situation. Using framework of second-order perturbation theory and the Edgeworth expansion...

متن کامل

Soliton Perturbation Theory for the Generalized Fifth-Order Nonlinear Equation

The adiabatic parameter dynamics of 1-soliton solution of the generalized fifth-order nonlinear equation is obtained by virtue of the soliton perturbation theory. The adiabatic change of soliton velocity is also obtained in this paper.

متن کامل

On a class of second-order nonlinear difference equation

* Correspondence: lds1010@sina. com School of Economics and Management, University of South China, Hengyang, Hunan 421001, People’s Republic of China Full list of author information is available at the end of the article Abstract In this paper, we consider the rule of trajectory structure for a kind of second-order rational difference equation. With the change of the initial values, we find the...

متن کامل

Global behaviour of a second order nonlinear difference equation

We describe the asymptotic behaviour and the stability properties of the solutions to the nonlinear second order difference equation xn+1 = xn−1 a + bxnxn−1 , n ≥ 0, for all values of the real parameters a, b, and any initial condition (x−1, x0) ∈ R .

متن کامل

Existence of Homoclinic Orbit for Second-order Nonlinear Difference Equation

By using the Mountain Pass Theorem, we establish some existence criteria to guarantee the second-order nonlinear difference equation ∆ [p(t)∆u(t − 1)] + f(t, u(t)) = 0 has at least one homoclinic orbit, where t ∈ Z, u ∈ R.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ufa Mathematical Journal

سال: 2018

ISSN: 2074-1863,2074-1871

DOI: 10.13108/2018-10-2-31